Week 9: Integration and local variables

Intended learning outcomes

By the end of this class, you will be able to:

e calculate integrals numerically using different approximations;
e use local variables in functions;
e define recursive functions.

1 A first look at numerical integration

The calculation of integrals is a task that crops up in many computer applica-
tions of mathematics. However, not all functions can be integrated in closed

form. For example, you can’t express the integral fu ’ ¢ dx in closed form in
terms of elementary functions. This means that numerical techniques are used
to obtain approximate answers. As you have seen in MAS110, you can ap-
proximate a definite integral (thought of as the area under a graph) by using
a number of rectangles. We will do this here using the ‘midpoint-rectangle
approximation’.

The idea is that to approximate fﬂ ! f(x)dx you split the interval from a to
b up into N equal subintervals. You use the midpoint of each subinterval to
determine the height of a rectangle, and add up the areas of all the rectangles to
obtain an approximation to the area under the graph of f(x). This is illustrated

in Figure

~

—~—

:

T
1
1
1
1
1
1
1
1
1
X

a=x x X x x 5=b

1 2 3 4

Figure 1: Midpoint-rectangle approximation to fu ’ f(x)dx, using N = 5.

1 .
Exercise 9.1. Find an approximation to the integral f x? dx using the midpoint-
rectangle approximation with two rectangles (N = 2). Compare this with the
answer obtained by calculus.

As the N rectangles have the same width as each other, their width is
bﬁ. If we label the intervals and rectangles in Python fashion, from 0 to
N -1, then the left-hand end-point of the interval i is x; = a + ibﬁ“ and its
midpoint is a + (i + 1 /2)%. The height of rectangle i is the value of the
function at its midpoint, f (a + (i + 1/2)%2). Thus the area of rectangle i is
bﬁ“ fla+@G+1/ 2)%), and the total area of the rectangles is given by

X b-a b—a
ZTf(a+(z+1/2) ik
i=0

This is straightforward to implement in Python, as shown by the program be-
low. The main part of this program is the functionmidpoint_approximation(),
which evaluates the above sum given a function f, integer N, and floats a and b.

20

21

22

23

24

25

26

27

28

MAS115 Mathematical Investigation Skills Python

import math

def midpoint_approximation(f, N, a, b):
Calculate an approximation to int_a*b f(x)
with N midpoint-rectangles
approximation =
for i in range(N):
approximation += (b - a)/N * f(a + (i + 1/2)*(b - a)/N)
return approximation

def f(x):
"""Calculate x squared."""
return x**2

def g(x):
"""Calculate e**(x**2)."""
return math.exp(x**2)

print("\int_0+1 x**2 dx is roughly {0:.6f}".format(
midpoint_approximation(f, 2, 0, 1)))

print("\int_0+1 e**(x**2) dx is roughly {0:.6f}".format(
midpoint_approximation(g, 1000, 0, 1)))

Line 11 includes some notation we have not used before. The syntax x += 1
is a short way to tell Python x = x + 1. You can think of it as “to x add one”.
Similarly you can write x *= 3 meaning “multiply x by three”, in place of
writing x = x * 3.

Run the above program and make sure that the N = 2 approximation it gives
for /01 x? dx is the same as that which you calculated by hand. Change the 2 on
line 26 to 10 then 100 then 1000, and compare the resulting approximations to
the actual integral.

Exercise 9.2. The trapezoidal approximation to an integral is done by using
trapeziums rather than rectangles. (See the wikipedia article on the Trapezoidal

Rule.) Using N trapeziums, the formula for the approximation to fu ! f(x)dx is

N-1
Z bZ;\]a (f(a+ib;]a) +f(a+(i+1)b1:]a)).

i=0

Add a function trapezoidal_approximation() to the above program which
calculates the trapezoidal approximation, similar to the midpoint approxima-
tion function. Use it to compare the midpoint and trapezoidal approximations

1 1
tof0 x2 dx and/0 eX dx.

2 Local variables

An important, but confusing, concept is the notion of local variables, which are
defined only inside Python functions. Look at the program below and write
down what you think it will print when run. Now type it in and run it.

def test_function():
i=7
print("Inside the function: i =", i)

MAS115 Mathematical Investigation Skills Python

i=2

print("Before the function is called: i =", i)
test_function()

print("After the function is called: i =", i)

Clearly something odd is going on! The variable seems to have switched back
to its old value with without being told to do so.

Many sheets back, functions were described as mini-programs. Basically,
each time they are called, they have their own variables. So the variable i in
one function will be ‘local” to that function and what you do to it will not affect
variables called i in other functions. This has many advantages, not least of
which is that you don't have to think about using different variable names in
all of your functions, and when you import modules you don't have to worry
that some of the functions might have the same variable names as those you've
used in your program.

The way that you communicate variables between your main program and
functions (or functions and other functions!) is by using parameters for the
function and by using return statements.

Now think about the following program. What does it do? Write down
what you think the output will be.

def test_function(i):

i=1+2

print("Inside the function: i =", i)
i=2
print("Before the function is called: i =", i)
test_function(i)
print("After the function is called: i =", i)

Now run the program. Did it do what you expected? Let’s go through what
Python does.

It sets the variable i in the main part of the program to be 2. It prints the
value of i. Then it sends the value of i, i.e. 2, to the function test_function(i).
The function sets its local variable i to be this number. It adds 2 to the local
variable i, prints it, then exits the function. The main program then prints its
variable i, which has been unchanged, and so is still 2.

In operation, the above program is identical to the following one:

def test_function(x):

X =X+ 2

print("Inside the function: x =", x)
i=2
print("Before the function is called: i =", i)
test_function(i)
print("After the function is called: i =", i)

We have just renamed what test_function() calls its variable, from i to x, and
this makes absolutely no difference to the running of the program.

If we had wanted to get the function to increase the main program’s variable
i by 2, we would have to explicitly have done it using a return command:

def test_function(x):
X =X+ 2
print("Inside the function: x =", x)
return x

MAS115 Mathematical Investigation Skills Python

i=2

print("Before the function is called: i =", i)
i = test_function(i)

print("After the function is called: i =", i)

Here we could rename the x in the function back to i without changing the
way the program runs, because it is local to the function and nothing outside
the function can actually see what it is called. Anything outside the function
will just know that the function accepts one value as a parameter and returns
one value.

Note that this is a first introduction to local variables and things are actually
slightly more complicated! But this is enough for now.

Exercise 9.3. The notion of local variable is what makes the following function
work. It is an example of a recursive function. Figure out what the function is
doing! This usually makes people scratch their head the first time they come
across it. Which familiar mathematical function is this Python function? Why
does it work?

def function(n):
"""Calculate some mysterious function recursively.
if n == 0:
return 1
return n*function(n-1)

e

print (function(5))

Homework

1. Finish off the sheet.

2. (Quick review.) What is the output of the following? Type it in and check.

def square(x):
X = X**2
print("x =", x)
return(x)

X =3

print("x =", x)

a = square(x)

print("x =", x, "; a =", a)

3. (Assessed homework.) This week’s homework involves writing a program im-
plementing Simpson’s rule, which is another method of approximating an
integral. To access the homework, you must navigate to the following webpage:

https://aim.shef.ac.uk/moodle/mod/quiz/view.php?id=432

Your code will be run with some test functions. If it gives the correct answer
you will get a mark, if it does not then you will get no mark. You can submit
your homework anytime from now til 2pm next Friday (4th December).

https://aim.shef.ac.uk/moodle/mod/quiz/view.php?id=432

	Week 9: Integration and local variables
	A first look at numerical integration
	Local variables

